图书馆。
杨依依依旧在查阅着力学课题的相关献资料。
据杨依依自己说,她们的这个课题正在加快进度,准备在这个月内结题。
杨依依身旁的陈舟,正埋着头,研究着冰雹猜想的问题。
在将冰雹猜想问题进行公式化后,陈舟正在进行相关的范例研究。
x11,代入公式:x2311221,结束。
x13,代入公式:x233125;x3351241,结束。
陈舟希望通过代入的实例找到一些规律。
但这显然比他想象的要难得多。
陈舟看着自己写下的内容,眉头微微皱起,心中想着:“经过xn13xn12的迭代,直到3xn121公式的成立,这其中必有两个结论”
陈舟边思考,边在草稿纸上写下:
1、任何一个xi进入迭代以后,都不会回到xi,也就是不会发生数字循环。如果发生循环,这就是反例,也就说明冰雹猜想被证伪。
2、xi进入迭代以后,数值不会发散,即是数值不会越来越大,直至无穷,而是在一个有限的范围内更替。
陈舟看着自己写下的两条结论,并没有多少欣喜的感觉,反而为如何证明它们犯了愁。
不得不说,通过这几天的研究,他发现了一个事实。
那就是这玩意,真特么的难,比让他解一千道吴西平出的超纲题都难
当然,这也只是陈舟在心里的吐槽。
相比于解一千道吴西平出的超纲题,他还是更愿意把时间花费在冰雹猜想的研究上。
陈舟记得冰雹猜想在2009时,已经被验证到5260的自然数,没有一例反例。
这种情况下,冰雹猜想大概率是正确的。
想到这,陈舟翻开错题集,认真的看了起来。
错题上是这几天积累的错误方向。
有时候,错误就是指路明灯。
关键就在于你能不能从错误中反省自己,从而找到正确的路。
陈舟认认真真的看完了后,他又开始了另外一种方法的尝试。
虽然这种方法,从一开始就被他认为是